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Abstract. We study numerically a 21-site Marland-Betts type cell of the S =: f Heisenberg 
antiferromagnet on a triangular lattice with nearest-neighbour ( N N )  and next-nearest- 
neighbour ( N N N )  couplings. The emphasis is on a comparison of the classical picture of 
this model with its quantum properties. By considering the structure function S ( k )  we 
demonstrate that there is a close connection between the classical and the quantum ground 
states of the system. Contrary to a previous conjecture we find no significant enhancement 
of the chiral order parameter with increasing strength of the N N N  coupling. 

Two-dimensional antiferromagnetic spin-; Heisenberg models have played an impor- 
tant role in the discussion of the properties of strongly correlated electron systems in 
two dimensions. Anderson conjectured [ 11 that the ground state of such electron 
systems should be similar to the resonating valence bond (RVB) state which he had 
previously proposed as the ground state of the antiferromagnetic spin-; Heisenberg 
model on the triangular lattice [2]. The frustrating interactions of the triangular 
antiferromagnet were thought to destroy the long-ranged NBel order which appears to 
prevail on the unfrustrated square lattice [3] and to favour the disordered RVB state. 
Recent numerical studies [4] as well as variational and semiclassical analyses [ 5 ]  of 
frustrated Heisenberg models have, however, cast doubts on this simple picture. In 
wide regions of the parameter spaces of these models their ground states seem to be 
ordered states which are reminiscent of the spin structures that emerge in the classical 
approach. It has however also been shown that for triangular antiferromagnets the 
nearest-neighbour ( N N )  interactions can be supplemented by next-nearest-neighbour 
( N N N )  interactions and by four-spin couplings such that they possess an RVB state as 
their ground state [ 6 ] .  More exotic RVB-like states that break time reversal invariance 
and parity have also been suggested as ground states of frustrated Heisenberg models 
[7]. In particular, it has been argued that for these states the pseudoscalar variable 
Xijk = Si. (Sj  x &) defined on an elementary triangular plaquette with corners i, j ,  k 
should have a uniform extensive expectation value [8]. A numerical study of the 
triangular Heisenberg antiferromagnet with N N  interaction only has not yielded 
evidence for this chiral symmetry breaking [9]. According to [8] this was not to be 
expected as chiral symmetry breaking should only occur when the N N N  interaction 
exceeds a critical value. 
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In this letter we present the results of a numerical diagonalization of the antifer- 
romagnetic Heisenberg model with N N  and N N N  interaction on a triangular lattice, 

where Si denote the spin-f matrices at the lattice site Ri .  
The numerical diagonalization was performed for a 21-site Marland-Betts type cell 

[ 101 with periodic boundary conditions. 
Jolicceur et aI [l l]  have recently studied the ground state properties of (1) by 

means of the spin wave approximation and by a numerical analysis of a 12-site cell. 
As their main result they find that the ground state of the model breaks the lattice 
rotational invariance spontaneously, when the N N N  coupling a exceeds a critical value. 
In this letter we also address the question of how the structure of the ground state of 
(1) changes when the parameter a is varied, but we focus our attention on the role of 
the wavevectors in the quantum and the classical description of the system. 

The main aim of the present letter is to point out the connections between the 
quantum states and the classical spin configurations of the model (1). As will be seen, 
these connections are most clearly reflected by the structure function S (  k )  which 
we have determined numerically. We shall also present results for the chiral order 
parameter of the 21-site system. 

At first we have to briefly review the classical treatment of the Hamiltonian (1) in 
which the spin operators Si are considered as classical vectors Si. The Hamiltonian is 
then diagonalized by introducing the Fourier transforms 

This yields 

where 

J ( q )  =cos(qx)+2 cos(qx/2) cos(& qy/2)+a(cos(& q y )  

+2  cos(3qJ2) cos(& qJ2)) (4) 

is the Fourier transform of the exchange couplings of (1) (here and in the following 
we set J = 1). Generically, the classical ground states are planar spiral spin configur- 
ations [12], 

Si =e, cos(k.Ri)+ e2 sin(k.R,) ( 5 )  
where e,, e2 are an arbitrary pair of orthogonal unit vectors. For a given value of a! 
the wavevector k of the spiral is that vector within the first Brillouin zone (BZ) that 
minimizes J ( q ) ,  and the corresponding energy per site is 

E " ( k )  = 2J(k).  ( 6 )  
From (4) one easily finds the following results [ll]. 

(i) For 0 < CY <$, J ( k )  is minimal at the corners of the hexagonal BZ of the triangular 
lattice figure 1. Only two of these points, e.g., k ,  = x '  ($, 0) and -kl are independent, 
the others being connected to them by reciprocal lattice vectors. The corresponding 
spin configurations are the two 120 degree spiral structures which differ by their helicity. 
The classical energy is E"(k , )  = 3(2a - 1). 
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Figure 1. Path of a minimum of J(g) within the Brillouin zone of the triangular lattice 
when a is varied. The small hexagon inside is the Brillouin zone of one of the sublattices. 

(ii) For $< a < 1 new global minima develop at k l 1 2 =  7r.(l, 1/&) and at the five 
equivalent points bisecting the faces of the BZ so that the ground sta.te changes 
discontinuously at a = $. kl12  is half a reciprocal lattice vector. This is one ofthe special 
situations first discussed by Villain [13] where in addition to the spiral ground state 
(4) with energy E c ' ( k l , , )  = -2( 1 + a )  a continuum of different ground slates exists. 
This case is discussed in detail in the work of Jolicceur et al [ 113. 

(iii) When LY > 1, the minima move towards the origin of the BZ on straight lines 
bisecting its faces. Generically, the ground states are incommensurate spiral structures, 
(4), with energy E"'(k)  = -3a + 1 / a  in this case. The star of k consists of six k vectors 
which generate three different spiral structures (4). In the limit a+oo the three 
sublattices decouple and the minima occur at the corners of the BZ of the sublattices. 

For our numerical diagonalization of the quantum model (1) we have used the 
Lanzcos method. We have confined our attention to the eigenspace of H with minimal 
total z-component of the spin. For the 21-site cell this space is spanned by the basis 
{IP)) with 

Sf lP)  = TilP) i =  1, .  . . ,21 ( 7 a )  
21 c SflPL) =flP,. 

i = l  

Owing to the translational invariance of H this eigenspace separates into 21 invariant 
subspaces labelled by the 21 momentum quantum numbers ko ,  k ,  , -kl  , k y ) ,  kp ' ,  /cy), 
s = 0,. . . , 5 .  The superscript s enumerates the star of vectors obtained from kr '  by 
counterclockwise C, rotations. The location of the five basic k vectors in the BZ is 
shown in figure 2. Since H is invariant under C, rotations the eigenvalues associated 
with a star of vectors are degenerate. We shall therefore omit the superscript s in the 
labelling of the eigenvalues. 
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Figure 2. The Brillouin zone associated with the 21-site Marland-Betts cell: k ,  = ~ * ( 4 / 3 , 0 ) ,  
k!jo'= ~ . (16 /21 ,8 f i / 21 ) ,  ki0'= ~.(6/7,2fi/21), kio'= ~ . ( 8 / 2 1 , 4 f i / 2 1 ) ,  k o = ( 0 , 0 ) .  

The lowest energy levels EqU(k,), r = 0,. . . ,4,  of H in the momentum subspaces 
are plotted in figure 3(a)  as functions of the N N N  interaction a. For a >> 1, the graphs 
of Eq"(k,)  approach straight lines. 

where E?" = -9 is the ground-state energy of the decoupled 7-site subsystems of our 
model. The classical energies E''( k,) = J (  k , )  are shown in figure 3( b ) .  Obviously, there 
is little resemblance between the behaviour of the classical and the quantum levels. 
One feature that is shared by them is a crossing of the lowest levels at ay" = 0.253 and 
at af'==0.173 indicating a discontinuous change of symmetry of the ground states. As 
we have mentioned before, for the infinite system a crossing of the lowest classical 
energies occurs at a =;, where the minimum of J ( q )  at q = kI l2  begins to develop. 
This point in k space is not accessible to the periodic 21-site system. Therefore, instead 
of Ec'(k l12) ,  E"'(k,) becomes the lowest classical level at a > a;'. By analogy with the 
classical case one would thus expect the quantum ground state to change from Ik,) to 
(k,) at ay" (we use a self-explanatory notation for the quantum states here). Instead, 
it changes to lk4). Also, the crossing of E C ' ( k , )  and Ec'(k4) at aS1=0.827 is not matched 
by a crossing of the corresponding quantum levels for a>ayU. Because of these 
differences one might get the impression that the classical approach yields little insight 
into the behaviour of the finite quantum system under consideration. 

In the following we shall consider the structure function S ( k )  for the ground states 
Ik,) and of our 21-site system. In contrast to the impression suggested by the 
energy levels of our 21-site system we shall find that S ( k )  reflects the classical picture 
of the model ( 1 )  in various respects. Owing to the translational invariance and the 
invariance of H under rotations in spin space the general expression for S(k) 
reduces to 

Eq"(k,) =3aE?" r = 0,.  . . , 4  (8) 

21 

S( k) = 3 1 COS( k *  (Ro- Ri))g"(Ro - Ri) (9) 
i = l  
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Figure 3. ( a )  Lowest energy levels Eq"(k)  of the 21-site quantum system ( 1 )  in the 
momentum subspaces against a; ay = 0.253. ( b )  The classical energies E"(k)  = 2 J ( k )  
against a; a:'=0.173, aC,'=0.286, aS'=0.827. 

where 

with 

are the two spin correlations in the ground states of the 21-sites system. Plots of the 
g"(R) as functions of the NNN interaction CY are shown in figure 4. The reduction of 
the sixfold rotational symmetry of the g"(R) to a twofold reflection symmetry as a! 
increases through CY? is in full agreement with the classical picture. In figure 5 the 
structure function S ( k )  is displayed at the points h, k l ,  ki0), ki0) and kko' (see figure 
3) for several values of a. In the least symmetric case S ( k )  takes eleven different values 
in the BZ. The above five points are those members of the stars of k , ,  k2 ,  k3 and k4 
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Figure 4. Two-spin correlations gZz(R ,  - Rj)  of first-, second-, third- and fourth-neighbour 
spins. For a < a:" the two-spin correlations are independent of the lattice direction, for 
a > a;" they differ in the three lattice directions. Note that there are only two fourth 
neighbours. 
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Figure 5. The structure function S ( k )  at five points of the Brillouin zone for various N N N  
couplings a ( a )  a < ay; ( b )  a 1 ay. The data points for a +CO were obtained by setting 
the NN coupling equal to zero. 
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that lie closest to the loci of the minima of J ( k )  which represent the ground-state 
energies of the infinite classical system. In the classical approach S ( k )  constists of a 
single spike of height 3N which is located at k ,  for a < a;' and which jumps to ki0' 
for the 21-site system as a grows through ay'. In the quantum case S ( k )  is spread out 
over the entire BZ, but, as is seen in figure 5, the locus of its maximum jumps from kl 
to k(20) as a increases through a$ in full agreement with the classical picture. 

We have also found a remarkable connection between the structure function S ( k )  
and the energies E"'(k)  shown in figure 3 ( b ) .  To illustrate this connection we display 
in figure 6 the values of S ( k )  for the same set of k vectors as in figure 5 as functions 
of a. One sees that while the inequalities 

S(k$O')> S(kk0')> S(k',O')> S (k0)  

hold for any finite a, S ( k l )  jumps across S(k , )  at ap" and crosses S ( k , )  and S ( k J  at 
a:" = 0.266 and at ay = 0.95 respectively. Although the crossings of the S ( k )  and of 
the E"'(k) do not occur at identical values of a and despite of the discontinuities in 
S ( k )  there is an obvious relation between the two quantities: in large intervals of the 
a axis the values of the structure function shown in figure 6 are ordered in the same 
way as for a classical thermal ensemble, i.e. S ( k , )  < S ( k , )  if E"'(k,) > Ec'(kc , ) .  Relations 
of this kind cannot of course, hold for all points of the BZ as there are only five distinct 
Ec' (k )  while generically S ( k )  takes eleven different values in the BZ. Nevertheless, we 
consider the above relations significant, since they apply for those points of the BZ of 
the infinite system, figure 2, that lie closest to the loci of the classical ground states of 
the infinite system. 

0.5 1.0 1.5 2 .o 
a 

Figure 6. Variation of S(k) with the N N N  coupling a for the same k vectors as in 
figure 5. The inset shows the crossing of S ( k , )  and S(k$") at a2". 

According to Baskaran [8] chiral symmetry breaking may be expected for the model 
under consideration when the NNN coupling exceeds a critical value. For a ground 
state with uniform or staggered long-range chiral order the appropriate order parameters 
are [9] 

P,=(C$. C,>/N (11) 
where 
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Figure 7. Adjacent elementary plaquettes used in defining the order parameters P,.  
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Figure 8. The chiral order parameter P, against a. 

Here, the sum extends over all pairs of adjacent elementary plaquettes of the lattice, 
figure 7. The results for our 21-site system displayed in figure 8 reflect the discontinuous 
change of the symmetry of the ground states, but no significant increase of P+ with cy 

is observed in either of the two states. Thus our results are not indicative of a state 
with broken chiral symmetry. 

To summarize, our numerical study of the 21-site triangular Heisenberg antifer- 
romagnet with N N N  interaction has revealed rather close connections between the 
quantum and the classical description of this model. In particular, the change in the 
symmetry of the classical ground state with increasing strength of the N N N  interaction 
is clearly reflected by the behaviour of the structure function. We could not find an 
indication of chiral symmetry breaking in the ground states of our finite system. 

The numerical calculations were carried out at the Regionales Rechenzentrum 
Niedersachsen, Hannover. 
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